
PHYSICAL REVIEW E JUNE 2000VOLUME 61, NUMBER 6
Equilibrium orbit analysis in a free-electron laser with a coaxial wiggler
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An analysis of single-electron orbits in combined coaxial wiggler and axial guide magnetic fields is pre-
sented. Solutions of the equations of motion are developed in a form convenient for computing orbital velocity
components and trajectories in the radially dependent wiggler. Simple analytical solutions are obtained in the
radially-uniform-wiggler approximation and a formula for the derivative of the axial velocityv i with respect to
the Lorentz factorg is derived. Results of numerical computations are presented and the characteristics of the
equilibrium orbits are discussed. The third spatial harmonic of the coaxial wiggler field gives rise to group III
orbits which are characterized by a strong negative mass regime.

PACS number~s!: 41.60.Cr, 52.75.Ms
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I. INTRODUCTION

Most free-electron lasers employ a wiggler with eithe
helically symmetric magnetic field generated by bifilar cu
rent windings or a linearly symmetric magnetic field gen
ated by alternating stacks of permanent magnets. A unif
static guide magnetic field is also frequently employe
Single-particle orbits in these helical and planar fields co
bined with an axial guide field have been analyzed in de
and have played a role in the development of free-elec
lasers@1#. The harmonics of gyroresonance for off-axis ele
trons caused by the radial variation of the magnetic field o
helical wiggler have been found by Chu and Lin@2#. Re-
cently, the feasibility of using a coaxial wiggler in a fre
electron laser has been investigated. Freundet al. @3,4# stud-
ied the performance of a coaxial hybrid iron wiggl
consisting of a central rod and a coaxial ring of alternat
ferrite and dielectric spacers inserted in a uniform static a
magnetic field. McDermottet al. @5# proposed the use of
wiggler consisting of a coaxial periodic permanent mag
and transmission line. Coaxial devices offer the possibility
generating higher power than conventional free-electron
sers and with a reduction in the beam energy required
generate radiation of a given wavelength.

In the present paper, single-particle orbits in a coax
wiggler are studied. The wiggler magnetic field is radia
dependent with the fundamental plus the third spatial h
monic component and a uniform static axial magnetic fi
present. In Sec. II the scalar equations of motion are in
duced and reduced to a form that is correct to first orde
the wiggler field. In Sec. III solutions of the equations
motion are developed in a form suitable for computing
electron orbital velocity and trajectory in the radially depe
dent magnetic field of a coaxial wiggler. The special case
a radially independent wiggler is also analyzed. In Sec.
the results of numerical computations of the wiggler fie
components, velocity components, radial excursions, and
F function for locating negative mass regimes are presen
and discussed. In Sec. V some conclusions are presente
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II. EQUATIONS OF MOTION

Electron motions in a static magnetic fieldB may be de-
termined by solution of the vector equation of motion

dv

dt
5

2e

gmc
v3B, ~1!

wherev,2e, andm are the velocity, charge, and~rest! mass,
respectively, of the electron. The Lorentz factorg is a con-
stant given by

g5~12v2/c2!21/2, ~2!

wherev5uvu is the constant electron speed.
The total magnetic field inside a coaxial wiggler will b

taken to be of the form

B5Br r̂1Bzẑ, ~3!

Br5BwFr~r ,z!, ~4!

Bz5B01BwFz~r ,z!, ~5!

whereB0 is a uniform static axial guide field, andFr andFz
are known functions of cylindrical coordinatesr andz. Equa-
tion ~1! may be written in the scalar form

dv r

dt
2

vu
2

r
52vu~V01VwFz!, ~6!

dvu

dt
1

vuv r

r
5v r~V01VwFz!2vzVwFr , ~7!

dvz

dt
5vuVwFr ; ~8!

V0 andVw are relativistic cyclotron frequencies given by

V05
eB0

gmc
, ~9!
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Vw5
eBw

gmc
. ~10!

Initial conditions will be chosen such that the transve
motion of the electron in theB0 field vanishes in the limit as
Bw approaches zero. Then, in order to develop a solutio
first order in the wiggler fieldBw , the scalar equations o
motion will be approximated by

dv r

dt
52V0vu , ~11!

dvu

dt
5V0v r2v iVwFr , ~12!

dvz

dt
50, ~13!

with the wiggler field approximated by the fundamental p
the third spatial harmonic component,

Fr5Fr1 sin~kwz!1Fr3 sin~3kwz!, ~14!

where

Frn[Gn
21@SnI 1~nkwr !1TnK1~nkwr !#, ~15!

Gn[I 0~nkwRout!K0~nkwRin!2I 0~nkwRin!K0~nkwRout!,

~16!

Sn[
2

np
sinS np

2 D @K0~nkwRin!1K0~nkwRout!#, ~17!

Tn[
2

np
sinS np

2 D @ I 0~nkwRin!1I 0~nkwRout!#, ~18!

andn51,3;Rin andRout are the inner and outer radii of th
coaxial waveguide,kw52p/lw where lw is the wiggler
~spatial! period, andI 0 , I 1 , K0, andK1 are modified Besse
functions.

III. ORBITAL ANALYSIS

A. Radially dependent wiggler

The scalar equations of motion may be solved to de
mine the electron orbital velocity and trajectory in a coax
wiggler. Equation~13! yields

vz5v i ~19!

where the constantv i is the root-mean-square axial veloci
component. With the initial axial position taken to bez0
50,

z5v it. ~20!

Equations~11!, ~12!, ~14!, and ~20! may be combined to
obtain

d2v r

dt2
1V0

2v r5 f ~ t !, ~21!
e

to

r-
l

where

f ~ t !5V0Vwv i@Fr1 sin~kwv it !1Fr3 sin~3kwv it !#.
~22!

By the method of variation of parameters, a solution of E
~21! may be obtained in the form

v r5S 2vu01V0
21E

0

t

f ~t!cos~V0t!dt D sin~V0t !

1S v r02V0
21E

0

t

f ~t!sin~V0t!dt D cos~V0t !, ~23!

wherev r0 andvu0 are the initial radial and azimuthal veloc
ity components. Then Eq.~11! yields

vu5S vu02V0
21E

0

t

f ~t!cos~V0t!dt D cos~V0t !

1S v r02V0
21E

0

t

f ~t!sin~V0t!dt D sin~V0t !. ~24!

The orbital velocity is given to first order inBw by Eqs.~23!,
~24!, and~19!. The trajectory may then be computed usin

r 5r 01E
0

t

v r~t!dt, ~25!

u5u01E
0

t

vu~t!dt, ~26!

and Eq.~20!.

B. Radially uniform wiggler

By neglecting the radial variation ofFr1 andFr3, a solu-
tion of Eq. ~21! may be obtained in the form

v r5a1 sin~kwv it !1a3 sin~3kwv it !, ~27!

where

an5
V0Vwv iFrn

V0
22n2kw

2 v i
2 ~n51,3!. ~28!

Equation~11! then yields

vu52V0
21kwv ia1 cos~kwv it !

2V0
21~3kwv ia3!cos~3kwv it !. ~29!

The corresponding initial conditions are

v r050, ~30!

vu052V0
21kwv ia12V0

21~3kwv ia3!. ~31!

Root-mean-square values of the velocity components m
be determined by use of Eqs.~27!, ~28!, and~19!. Replacing
v2 by its root-mean-square value in Eq.~2! then yields
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v i
2

c2 F11
1

2 S a1

v i
D 2

1
1

2
V0

22kw
2 a1

21
1

2 S a3

v i
D 2

1
9

2
V0

22kw
2 a3

2G512g22. ~32!

The derivative ofv i with respect tog may be obtained from Eq.~32! and, after some algebra, cast into the form

dv i

dg
5

c2

gg i
2v i

F, ~33!

where

F512

(
n51,3

~V0
22n2kw

2 v i
2!23g i

2Vw
2 Frn

2 V0
2~V0

213n2kw
2 v i

2!

21 (
n51,3

~V0
22n2kw

2 v i
2!23Vw

2 Frn
2 V0

2~V0
213n2kw

2 v i
2!

. ~34!
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This equation may be used to establish the existence
negative mass regime.

IV. NUMERICAL RESULTS

A numerical computation was conducted to investig
the properties of the equilibrium orbits of electrons insi
a coaxial wiggler. The wiggler wavelength 2p/kw and
laboratory-frame electron densityn0 were taken to be 3 cm
and 1012 cm23, respectively. The wiggler magnetic fieldBw
was taken to be 3745 G, which corresponds to the relativi
wiggler frequencyVw /ckw50.442. The electron-beam en
ergy (g21)m0c2 was taken to be 700 keV, correspondin
to a Lorentz factorg52.37. The axial magnetic fieldB0 was
varied from 0 to 25.3 kG, corresponding to a variation fro

FIG. 1. Normalized axial velocityv i /c as a function of the
normalized axial guide magnetic fieldV0 /ckw for group I, II, and
III orbits. Narrow width of the second resonance atV0 /ckw'2.7
compared to the width of the first magnetoresonance atV0'kwv i is
illustrated in Fig. 1~b!.
a

e

ic

0 to 3 in the normalized relativistic cyclotron frequenc
V0 /ckw associated withB0. The inner and outer radii of the
coaxial wiggler were assumed to beRin51.5 cm andRout
53 cm, respectively.

Figure 1 shows the variation of the axial velocity of th
quasi-steady-state orbits with the axial guide magnetic fi
for three classes of solutions, group I orbits for which
,V0,kwv i , group II orbits withkwv i,V0,3kwv i , and
group III orbits withV0.3kwv i . The existence of group III
orbits is due to the presence of the third spatial harmonic
the wiggler field, which also produces the second mag
toresonance atV0'3kwv i . The narrow width of the second
resonance atV0 /ckw'2.7 compared to the width of the firs
magnetoresonance atV0'kwv i is illustrated in Fig. 1~b!.
This is due to the relatively weak third harmonic compar
to the fundamental component of the wiggler field. It shou
be noted that, although the exact resonancesV05kwv i and
V053kwv i occur at the origin wherev i /c5V0 /ckw50, the
‘‘first magnetoresonance’’ in the literature refers to the gro
II orbits with cyclotron frequencies aroundV0 /ckw'1 in
Fig. 1. Similarly, we refer to the group III orbits with cyclo
tron frequency aroundV0 /ckw'2.7 as the second magne
toresonance.

The rate of change of the electron axial velocity wi
electron energy is proportional toF and is equal to unity in
the absence of the wiggler field. Figure 2 illustrates the

FIG. 2. FactorF as a function of the normalized axial guid
magnetic fieldV0 /ckw for group I, II, and III orbits.
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pendence ofF on the radial wiggler magnetic field and th
axial guide magnetic fieldB0. The curves corresponding t
the group I and II orbits are almost unaffected by the th
harmonic and are almost the same as in Ref.@6#, where the
third harmonic is neglected. A negative mass regime~i.e.,
negativeF for which a decrease in the axial velocity resu
in an increase in the electron energy! is found for group III
orbits that is stronger than that of the group II orbits.

Equations~15!–~18! are used to calculate the radial com
ponents of the wiggler fieldFr1 andFr3. For the axial com-
ponent the following expressions are used@4#:

Fz5Fz1 cos~kwz!1Fz3 cos~3kwz!, ~35!

Fzn5Gn
21@SnI 0~nkwr !2TnK0~nkwr !#. ~36!

Figure 3 shows the variation of the amplitudes of the wigg
magnetic field~divided byBw53745 G) with radius, for the
first and third spatial harmonics. For the first harmonic
radial componentFr1 has a minimum atr'2.28 cm and the
axial componentFz1 changes sign around this point. McDe
mott et al. @5# have demonstrated the stability of a thin a
nular electron beam whenFr1 is minimum at the beam ra
dius. The radial and axial components of the third harmo
of the wiggler Fr3 and Fz3 are also shown in Fig. 3. Th
magnitudes of Fr3 and Fz3 are both minimum atr
'2.28 cm whereFr1 is minimum. This is actually an inflec
tion point for Fz3.

Variations of the radial components of the first and th
spatial harmonics of the normalized wiggler magnetic fi
Fr1 andFr3 with the wiggler wave numberkw are shown in
Fig. 4. Figure 4 also shows the dimensionless transverse
locity coefficientsā15a1 /c and ā35a3 /c for the initial
orbit radiusr 0'2.28 cm whereFr1 is minimum. The cyclo-
tron frequencyV0 /ckw'2.7 is taken at the second magn
toresonance, and our choice of 3 cm for the wiggler wa
length corresponds tokw'2.1 cm21. It can be observed tha
at this wave number, although the radial component of
wiggler field at the first harmonicFr1 is much larger than a
the third harmonicFr3, the transverse velocity coefficients o
the third harmonicā3 are larger thanā1. This shows that the
third harmonic may have considerable effect around the

FIG. 3. Radial dependence of the radial and axial magn
fields ~divided byBw53745 G) in the coaxial wiggler for the fun
damental and third spatial harmonics.
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ond magnetoresonance atV0'3kwv i . Away from this reso-
nance Eq.~28! shows thata3 will be of the order ofFr3.

In order to study the transverse motion of electrons in
radially dependent wiggler field, Eqs.~11!, ~12!, ~25!, and
~26! are solved numerically with the initial conditions chos
so that, in the limit of zero wiggler field, there is axial mo
tion at constant velocityv i but no Larmor motion. Figure 5
shows the variation of the radial and azimuthal compone
of electron velocity withz(5v it). The normalized cyclotron
frequencyV0 /ckw is chosen to be 0.5, 1.2, and 3 for grou
I, II, and III orbits, respectively, which are somewhat aw
from the magnetoresonances. Solid curves correspond to
initial orbit radiusr 052.28 cm, which is at the point wher
Fr1 is minimum. Broken curves correspond tor 051.8 cm,

ic

FIG. 4. Wave-number dependence of the radial component
the normalized wiggler magnetic fieldFr1 , Fr3 and the dimension-

less transverse velocity coefficientsā1 ,ā3. The normalized cyclo-
tron frequencyV0 /ckw52.7 is taken at the second magnetores
nance andr 052.28 cm.

FIG. 5. Normalized transverse velocity components as a fu
tion of axial distancez for the initial orbit radiusr 052.28 cm
~solid curves! and r 051.8 cm ~dashed curves!. The normalized
cyclotron frequencyV0 /ckw is 0.5, 1.2, and 3 for the group I, II
and III orbits, respectively.
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which is away from theFr1 minimum. It can be observed
that the spatial periodicity ofv r and vu for the first two
groups is equal to one wiggler wavelength, which is the sa
as that of the first harmonic. Although group III orbits have
clear sinusoidal shape atr 052.28 cm~solid curves!, slight
deviations from sinusoidal shape are obvious atr 0
51.8 cm ~broken curves!. This is because atr 052.28 cm
where Fr1 is minimum Fr3 is very small. Therefore away
from the resonance the third harmonic plays almost no
~at r 052.28 cm). Moving away from theFr1 minimum to
r 051.8 cm, however, increases the magnitude ofFr3
slightly, making the effect of the third harmonic noticeab
on group III orbits, which are away from the second mag
toresonance, in Fig. 5.

FIG. 6. Normalized transverse velocity components as a fu
tion of axial distancez for group III orbits, at the second magne
toresonanceV0 /ckw52.7. Solid curves correspond to the radia
dependent wiggler and broken curves correspond to the rad
independent wiggler.

FIG. 7. Normalized radial velocity as a function of axial di
tancez for group II orbits at the first magnetoresonanceV0 /ckw

50.9 with r 052.28 cm. Solid curves correspond to the radia
dependent wiggler and broken curves correspond to the rad
independent wiggler.
e

le

-

Figure 6 shows the variations ofv r /c and vu /c with z
(5vit) for group III orbits when the cyclotron frequency
adjusted to the second magnetoresonance atV0 /ckw'2.7.
At r 052.28 cm the periodicity is approximately equal
lw/3, which is the same as that of the third harmonic, a
shows the strong influence of the third harmonic on
transverse velocity components. Going away from theFr1
minimum tor 051.8 cm makes the amplitudes of oscillatio
of v r and vu larger. Broken curves correspond to the so
tions of Eqs.~27! and ~29! when the radial variation of the
wiggler field is neglected. These solutions do not differ a
preciably from ther-dependent solutions forr 052.28 cm,
because at minimumFr1 the radial excursions are small fo
group III orbits. Away from the Fr1 minimum at r 0
51.8 cm, however, deviations are noticeable due to
larger radial excursions.

Figure 7 showsv r /c versusz for group II orbits for the
r-dependent wiggler~broken curves! andr-independent wig-
gler ~solid curves!. The initial orbit radius is taken atr 0
52.28 cm and the cyclotron frequency is chosen around
first magnetoresonance atV0 /ckw50.9. Large radial excur-
sions of electrons for group II orbits make the transve
velocity strongly affected by the radial dependency of t
wiggler field. The amplitude is also modulated in space w
a wavelength of around 16lw548 cm.

The radial excursionr shown in Fig. 8 corresponds to th
cyclotron frequencies away from the magnetoresonance

c-

lly

lly

FIG. 8. Radial excursionr as a function of axial distancez for
r 052.28 cm ~solid curves! and r 051.8 cm ~broken curves! for
group I, II, and III orbits out of resonance atV0 /ckw50.5, 1.2, and
3, respectively.

FIG. 9. Radial excursionr as a function of axial distancez for
group III orbits atr 052.28 cm. Solid curve corresponds to res
nance atV0 /ckw52.7 and broken curve corresponds to out of res
nance atV0 /ckw53.
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V0 /ckw equal to 0.5, 1.2, and 3 for the group I, II, and I
orbits, respectively. Solid curves correspond to ther 0
52.28 cm and the broken curves correspond tor 0
51.8 cm. It can be seen that when the electrons are inje
into the wiggler atr 052.28 cm, whereFr1 is minimum, the
electron orbits remain well away from the waveguide wa
at Rin51.5 cm andRout53 cm.

Figure 9 compares the radial excursions of group III
bits at the second magnetoresonance atV0 /ckw52.7, ~solid
curve! with those slightly away from the resonance
V0 /ckw53 ~broken curve!. The influence of the third har
monic can be clearly seen through the modulation of
third harmonic by the first harmonic when the cyclotron fr
quency is adjusted at the second magnetoresonance.

V. CONCLUSIONS

The third spatial harmonic of the coaxial wiggler fie
gives rise to group III orbits withV0.3kwv i . This rela-
tively weak third harmonic makes the width of the seco
magnetoresonance narrow compared to the first ma
toresonance. A strong negative mass regime is found for
group III orbits. By adjusting the cyclotron frequency at t
second magnetoresonance, the wiggler-induced velocit
the group III orbits was found to increase considerab
When the electrons are injected into the wiggler where
magnetic field is minimum, the electron orbits remain w
away from the waveguide boundaries.

Harmonic gyroresonance of electrons in a combined h
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cal wiggler and axial guide magnetic field has been repor
by Chu and Lin@2#. In their analysis the relativistic single
particle equation of motion is used, with the axial veloc
as well as the axial magnetic field of the wiggler averag
along the axial direction. By assuming near-steady-state
bits for off-axis electrons they found that the radial variati
of the wiggler magnetic field produces a harmonic struct
in the transverse force. This force, in turn, comprises os
lations at all harmonics ofkwz. It should be noted that ther
is no harmonic structure in the helical wiggler itself and t
higher velocity harmonics vanish for the exact steady-s
orbits of the on-axis electrons. Moreover, higher harmon
do not appear in the one-dimensional helical wiggler wh
the radial variation is neglected.

In the present analysis of a coaxial wiggler, on the oth
hand, the equation of motion is written to first order
the wiggler amplitude. With this approximation, the axi
component of the wiggler field makes no contribution
the problem, leaving the axial velocity as a constant. T
magnetic field of a coaxial wiggler is composed of a fund
mental plus a large number of odd spatial harmonics, wh
appear directly in the magnetic force represented byf (t)
in Eq. ~22!. The third harmonic inf (t) appears in the trans
verse velocity components as a part of the integrands in E
~23! and ~24! and is also demonstrated numerically for t
radially dependent coaxial wiggler, but for the radially un
form wiggler the third harmonic is explicit in the solution
Eqs.~27!–~29!.
and
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